16th AIAI 2020, 5 -7 June 2020, Greece

Indoor Localization with Multi-Objective selection of Radiomap Models

Rafael Alexandrou, Harris Papadopoulos, Andreas Konstantinidis


  Over the last years, Indoor Localization Systems (ILS) evolved, due to the inability of Global Positioning Systems (GPS) to localize in indoor environments. A variety of studies tackle indoor localization with technologies such as Bluetooth Beacons and RFID that require costly installation, or techniques such as Google Wi-Fi/Cell DB and fingerprinting that leverage from the already existing Wi-FI and telecommunication infrastructure. Additionally, recent studies attempt to solve the same problem using Bio-Inspired techniques, such as Artificial Neural Networks (ANNs) and Deep Neural Networks (DNN). In this paper, we introduce a Multi-Objective Optimization Radiomap Modelling (MOO-RM) based ILS. The MOO-RM ILS divides the dataset into clusters using a K-Means algorithm and trains ANN models on the data of each cluster. The resulting models are fed into a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), which minimizes the required storage space and the localization error, simultaneously. Our experimental studies demonstrate the superiority of the proposed approach on real datasets of Wi-Fi traces with respect to various existing techniques.  

*** Title, author list and abstract as seen in the Camera-Ready version of the paper that was provided to Conference Committee. Small changes that may have occurred during processing by Springer may not appear in this window.