16th AIAI 2020, 5 -7 June 2020, Greece

A deep learning approach to aspect-based sentiment prediction

Georgios Alexandridis, Konstantinos Michalakis, John Aliprantis, Pavlos Polydoras, Panagiotis Tsantilas, George Caridakis


  Sentiment analysis is a vigorous research area, with many application domains. In this work, aspect-based sentiment prediction is examined as a component of a larger architecture that crawls, indexes and stores documents from a wide variety of online sources, including the most popular social networks. The textual part of the collected information is processed by a hybrid bi-directional long short-term memory architecture, coupled with convolutional layers along with an attention mechanism. The extracted textual features are then combined with other characteristics, such as the number of repetitions, the type and frequency of emoji ideograms in a fully-connected, feed-forward artificial neural network that performs the final prediction task. The obtained results, especially for the negative sentiment class, which is of particular importance in certain cases, are encouraging, underlying the robustness of the proposed approach.  

*** Title, author list and abstract as seen in the Camera-Ready version of the paper that was provided to Conference Committee. Small changes that may have occurred during processing by Springer may not appear in this window.