16th AIAI 2020, 5 -7 June 2020, Greece

Versatile Internet of Things for Agriculture: An eXplainable AI Approach

Nikolaos Tsakiridis, Themistoklis Diamantopoulos, Andreas Symeonidis, John Theocharis, Athanasios Iossifides, Periklis Chatzimisios, George Pratos, Dimitris Kouvas


  The increase of the adoption of IoT devices and the contemporary problem of food production have given rise to numerous applications of IoT in agriculture. These applications typically comprise a set of sensors that are installed in open fields and measure metrics, such as temperature or humidity, which are used for irrigation control systems. Though useful, most contemporary systems have high installation and maintenance costs, and they do not offer automated control or, if they do, they are usually not interpretable, and thus cannot be trusted for such critical applications. In this work, we design Vital, a system that incorporates a set of low-cost sensors, a robust data store, and most importantly an explainable AI decision support system. Our system outputs a fuzzy rule-base, which is interpretable and allows fully automating the irrigation of the fields. Upon evaluating Vital in two pilot cases, we conclude that it can be effective for monitoring open-field installations.  

*** Title, author list and abstract as seen in the Camera-Ready version of the paper that was provided to Conference Committee. Small changes that may have occurred during processing by Springer may not appear in this window.