22nd EANN 2021, 25 - 27 June 2021, Greece

Real-time Multimodal Emotion Classification System in E-learning Context

Arijit Nandi, Fatos Xhafa, Laia Subirats, Santi Fort


  Emotions of learners are crucial and important in e-learning as they promote learning. To investigate the effects of emotions on improving and optimizing the outcomes of e-learning, machine learning models have been proposed in the literature. However, proposed models so far are suitable for offline mode, where data for emotion classification is stored and can be accessed boundlessly. In contrast, when data arrives in a stream, the model can see the data once and real-time response is required for real-time emotion classification. Additionally, researchers have identified that single data modality is incapable of capturing the complete insight of the learning experience and emotions. So, multimodal data streams such as electroencephalogram (EEG), Respiratory Belt (RB), electrodermal activity data (EDA), etc., are utilized to improve the accuracy and provide deeper insights in learners’ emotion and learning experience. In this paper, we propose a Real-time Multimodal Emotion Classification System (ReMECS) based on Feed-Forward Neural Network, trained in an online fashion using the Incremental Stochastic Gradient Descent algorithm. To validate the performance of ReMECS, we have used the popular multimodal benchmark emotion classification dataset called DEAP. The results (accuracy and F1-score) show that the ReMECS can adequately classify emotions in real-time from the multimodal data stream in comparison to the state-of-the-art approaches.  

*** Title, author list and abstract as seen in the Camera-Ready version of the paper that was provided to Conference Committee. Small changes that may have occurred during processing by Springer may not appear in this window.